- 7th Sep 2021
- 06:03 am
This is the file19.txt we needed this file for calculating our problem HARTIGAN is a dataset directory that contains test data for clustering algorithms. The data files are all simple text files, and the format of the data files is explained on the web page
library(factoextra) library(fpc) library(dplyr) #Q2.2 : K-means clustering (2.5 points divided evenly among the components) clust<-read.csv("Cluster.csv") str(clust) cluste<-scale(clust[-1]) cluster<-data.frame(cluste) rownames(cluster)<-clust$Name res.dst<-get_dist(cluster, method="pearson") fviz_dist(res.dst,lab_size=8) res.km<-eclust(cluster, "kmeans",nstart=20) fviz_gap_stat(res.km$gap_stat) fviz_silhouette(res.km) res.km$nbclust fviz_nbclust(res.km) fviz_cluster(res.km) clusters<-res.km$cluster Clust1<-cbind(cluster, clusters) table(Clust1$clusters) aggregate(clust[-1], by=list(cluster=res.km$cluster), mean) #Q2.3 : Hierarchical clustering (3 points divided evenly among the components) set.seed(1122) clust_1<-sample(cluster,size=35, replace=TRUE) rownames(clust_1)<-clust$Name res.hclust<-eclust(clust_1, "hclust", hc_method="single") fviz_dend(res.hclust, rect = TRUE) fviz_silhouette(res.hclust) fviz_cluster(res.hclust) fviz_dend(res.hclust) res.hclust_2<-eclust(clust_1[,2:9], "hclust", hc_method="complete") fviz_dend(res.hclust_2, rect = TRUE) fviz_silhouette(res.hclust_2) fviz_cluster(res.hclust_2) fviz_dend(res.hclust_2) res.hclust_3<-eclust(clust_1[,2:9], "hclust", hc_method="average") fviz_dend(res.hclust_3, rect = TRUE) fviz_silhouette(res.hclust_3) fviz_cluster(res.hclust_3) fviz_dend(res.hclust_3) #Complete produces least singleton sets res.hclust_4<-eclust(clust_1[,2:9], "hclust",k=3, hc_method="complete") fviz_dend(res.hclust_4, rect = TRUE) fviz_silhouette(res.hclust_4) fviz_cluster(res.hclust_4) fviz_dend(res.hclust_4)